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The Interface Between Distributed Operating System
and High-Level Programming Language

Michael L. Scott

Computer Science Department
University of Rochester
Rochester. NY 14627

ABSTRACT

A distributed operating system provides a process abstraction and primitives for communi-
cation between processes. A distributed programming language regularizes the use of the
primitives, making them both safer and more convenient. The level of abstraction of the
primitives, and therefore the division of labor between the operating system and the
language support routines, has serious ramifications for efficiency and flexibility. Experi-
ence with three implementations of the LYNX distributed programming language suggests
that functions that can be implemented on either side of the interface are best left to the
language run-time package.

I. Introduction
Recent years have seen the development of a large number of distributed programming

languages and an equally large number of distributed operating systems. While there are excep-
tions to the rule. it is generally true that individual research groups have focused on a single
language. a single operating system, or a single language/O.S. pair. Relatively little attention has
been devoted to the relationship between languages and O.S. kernels in a distributed setting.

Amoeba [161, Demos-MP [171, Locus [271, and the \ kernel [8] are among the better-kno% n
distributed operating systems. Each by-passes language IsSue, b) rel.ing on a simple librar.-
routine interface to kernel communication primitives. Eden [61 and Cedar [251 have both devoted a
considerable amount of attention to programming language issues. but each is very much a single-
language system. The Accent project at CML [18] is perhap% the only well-known effort to support
more than one programming language on a single underl. ing kernel. Even so, Accent is only able
to achieve its multi-lingual character by insisting on a single. universal model of interprocess com-
munication based on remote procedure calls [121. Languages with other models of process interac-
tion are not considered.

In the language community, it is unusual to find implementations of the same distributed
programming language for more than one operating system, or indeed for any existing operating
system. Dedicated, special-purpose kernels are under construction for Argus [151, SR [1,21, and
NIL [23,241. Several dedicated implementations have been designed for Linda [7, 111. No distri- -

buted implementations have yet appeared for Ada [26).
LI
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If parallel or distributed hardware is to be used for general-purpose computing, we must
eventually learn how to support multiple languages efficiently on a single operating system.
Toward that end. it is worth considering the division of labor between the language run-time pack-
age and the underlying kernel. Which functions belong on which side of the interface? What is
the appropriate level of abstraction for uni'ersal primitives? Answers to these questions will
depend in large part on experience with a variet. of language/O. S. pairs.

This paper reports on implementations of the LYNX distributed programming language for
three existing, but radically different, distributed operating systems. To the surprise of the imple-
mentors, the implementation effort turned out to be substantially easier for kernels with lo%-level
primitives. If confirmed by similar results with other languages, the lessons provided by work on
LYNX should be of considerable value in the design of future systems.

The first implementation of LYNX was constructed during 1983 and 1984 at the Universit
of Wisconsin. where it runs under the Charlotte distributed operating system [4, 10] on the Crystal
multicomputer [9]. The second implementation was designed. but never actually built, for Kepecs
and Solomon's SODA [13, 14]. A third implementation has recently been released at the Universit,
of Rochester, %here it runs on BBN Butterfly multiprocessors 15] under the Chr.salis operating s'.s-
tern.

Section 2 of this paper summarizes the features of I 'N NX that ha'e an impact on the ser-
vices needed from a distributed operating system kernel. Sections .. 4. and 5 describe the three
LYNX implementations, comparing them one to the other. -The final section discusses possible les-
sons to be learned from the comparison.

2. LYNX Overvie%

The LYNX programming language is not itself the subject of this article. Language featureN
and their rationale are described in detail elsewhere [20, 21. 22]. For present purposes. it suffices to
say that LYNX was designed to support the loosely-coupled style of programming encouraged by a
distributed operating system. Unlike most existing languages, LYNX extends the advantages of
high-level communication facilities to processes designed in isolation, and compiled and loaded at
disparate times. LYNX supports interaction not only between the pieces of a multi-process appli-
cation, but also between separate applications and between user programs and long-lived s stem
se rN e rs.

Processes in LYNX execute in parallel, possibly on separate processors. There is no provi-
sion for shared memory. Interprocess communication uses a mechanism similar to remote pro-
cedure calls (RPC), on virtual circuits called links. Links are two-directional and have a single pro-
cess at each end. Each process may be divided into an arbitrary number of threads of control, but
the threads execute in mutual exclusion and may be managed by the language run-time package,
much like the coroutines of Modula-2 1281.

2.1. Communication Characteristics

(The following paragraphs describe the communication behavior of LYNX processes. The
description does not provide much insight into the way that LYNX programmers think about their
programs. The intent is to describe the externally-visible characteristics of a process that must be
supported by kernel primities.)

Messages in LYNX are not received asynchronously. They are queued instead, on a link-
by-link basis. Each link end has one queue for incoming requests and another for incoming
replies. Messages are received from a queue only when the queue is open and the process that
owns its end has reached a well-defined block point. Request queues may be opened or closed I
under explicit process control. Repl. queues are opened when a request has been sent and a reply
is expected. The set of open queues may therefore vary from one block point to the next.

A blocked process waits until one of its pre'.iously-sent messages has been received, or unul
an incoming message is available in at least one of its open queues. In the latter case. the process
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figure 1: link moving at both ends

chooses a non-empty queue, receives that queue's first message, and executes through to the next
block point. For the sake of fairness, an implementation must guarantee that no queue is ignored
fore% er.

Messages in the same queue are received in the order sent. Each message blocks the send-
ing coroutine within the sending process. The process must be notified when messages are recei, ed
in order to unblock appropriate coroutines. It is therefore possible for an implementation to rel.,
upon a stop-and-%ait protocol with no actual buffering of messages in transit. Request and repl.
queues can be implemented by lists of blocked coroutines in the run-time package for each sending
process.

The most challenging feature of links, from an implementor's point of % ie. is the pro% ision
for moving their ends. Any message. request or repl,. can contain reference' to an arhitr.tr%
number of link ends. Language semantics specif that receipt of such a message has the side etlcf.
of moving the specified ends from the sending process to the re, eter. The process at the far end
of each moved link must be oblivious to the mo'e. e~en if it is currently relocating Its end as 1el.

In figure 1. for example. processes A and I) are mooinzg their ends of link 3. independent. in such
a way that what used to connect A to ) will now connect B to C.

It is best to think of a link as a flexible hose. A message put in one end will eventual] be
delivered to whatever process happens to be at the other end. The queues of available but un-
received messages for each end are associated with the link itself, not with any process. A moved
link may therefore (logically at least) have messages inside, waiting to be received at the moving
end. In keeping with the comment above about stop-and-wait protocols, and to prevent complete
anarchy, a process is not permitted to move a link on which it has sent unreceived messages, or on
which it owes a reply for an already-received request.

2.2. Kernel Requirements

To permit an implementation of I A NX. an operating system kernel must provide processes.
communication primitives, and a naming mechanism that can be used to build links. The major
questions for the designer are then 1) hot% are links to be represented? and 2) how are RPC-stIe
request and reply messages to be transmitted on those links? It must be possible to move links

J
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without losing messages. In addition. the termination of a process must destroy all the links
attached to that process. Any attempt to send or receive a message on a link that has been des-
troyed must fail in a way that can be reflected back into the user program as a run-time exception.

3. The Charlotte Implementation

3.1. Overview of Charlotte
Charlotte [4, 101 runs on the Crystal multicomputer (9), a collection of 20 VAX 11/750 node

machines connected by a 10-Mbit/second token ring from Proteon Corporation.

The Charlotte kernel is replicated on each node. It pro, ides direct support for both
processes and links. Charlotte links were the original motivation for the circuit abstraction in
LYNX. As in the language. Charlotte links are two directional. with a single process at each end.
As in the language. Charlotte links can he created, destroyed, and moved from one prx:ess to
another. Charlotte even guarantees that process termination destroys all of the process's links. It
was onginall. expected that the implementation of LYNX-style interprocess communication would
be almost triial. As described in the rest of this section. that expectation turned out to be naie.

Kernel calls in Charlotte include the following:

Makel ink (bar endl. end2 " link)
Create a link and return references to its ends.

Destro. (msend : link)
Destroy the link with a given end.

Send (L : link: buffer • address. length : integer: enclosure : link)
Start a send actihit. on a gi~en link end. optionally enclosing one end of some other link.

Receive (L : link: buffer : address: length : integer)
Start a receise acti0t- on a given link end.

Cancel (1W : link: d : direction)
Attempt to cancel a pre~iously-started send or receive activity.

Wait (ar e : description)
Wait for an activity to complete, and return its description (link end, direction, length, enclo-
sure).

All calls return a status code. All but Wait are guaranteed to complete in a bounded amount of
time. Wait blocks the caller until an activity completes.

The Charlotte kernel matches send and receive activities. It allows onl one outs'tanding
activity in each direction on a given end of a link. Completion must be reported h, If au before
another similar acti'ity can be started.

3.2. Implementation of LYNX
The language run-time package represents every LYNX link with a Charlotte link. It uses

the activities of the Charlotte kernel to simulate the request and reply queues described in section
2.1. It starts a send acti~ity on a link whenexer a process attempts to send a request or reply me-
sage. It starts a receive actiity on a link when the corresponding request or reply queue is opened.
if both were closed before. It attempts to cancel a pre,,ious-started receive activity when a process
closes its request queue. if the repl. queue is also closed. The multiplexing of request and repl.
queues onto receive actiities was a major source of problems for the implementation effort. A
second source of problems was the nabiihty to enclose more than one link in a single Charlotte
message.
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3.2.1. Screening Messages For the vast majority of remote operations, only two Charlotte mes-
sages are required: one for the request and one for the reply. Complications arise, however, in a
number of special cases. Suppose that process A requests a remote operation on link L.

request

Process B receives the request and begins serving the operation. A now expects a reply on I. and
starts a receive activity with the kernel. Now suppose that before replying B requests another
operation on L, in the reverse direction (the coroutine mechanism mentioned in section 2 makes
such a scenario entirely plausible). A will receive B's request before the reply it %anted Since %
may not be willing to serve requests on L at this point in time (its request queue is closed). B is not
able to assume that its request is being served simply because A has received it.

A similar problem arises if A opens its request queue and then closes it again, before reach-
ing a block point. In the interests of concurrency, the run-time support routines %ill hae posted a
Receive with the kernel as soon as the queue was opened. When the queue is closed. they will
attempt to cancel the Receive. If B has requested an operation in the meantime, the Cancel will
fail. The next time A's run-time package calls Wait, it will obtain notification of the request from
B. a message it does not want. Delaying the start of receive activities until a block point does not
help. % must still start activities for all its open queues. It will continue execution after a message
is receiNed from exactly one of those queues. Before reaching the nexi block point, it may change
the set of messages it is willing to receive.

It is tempting to let A buffer unwanted messages until it is again willing to receive from B.
but such a solution is impossible for two reasons. First. the occurrence of excepuons in I Y\X can
require A to cancel an outstanding Send on L. If B has already received the message (inad,¢r-
tently ) and is buffering it internally, the Cancel cannot succeed. Second. the scenario in %hich X
recei'es a request but wants a reply can be repeated an arbitrary number of times, and % cannot be
expected to provide an arbitrary amount of buffer space.

A must return unwanted messages to B. In addition to the request and repls messages
needed in simple situations, the implementation nov, requires a retry message Reir) is a negative
acknowledgment. It can be used in the second scenario above, when A has closed its request
queue after receiving an unwanted message. Since A will have no Receive outstanding the re-sent
message from B will be delayed by the kernel until the queue is re-opened.

In the first scenario, unfortunately. A will still have a Receive posted for the reply it wants
from B. If A simply returned requests to B in retry messages, it might be subjected to an arbitrary
number of retransmissions. To prevent these retransmissions we must introduce the forbid and
allow messages. Forbid denies a process the right to send requests (it is still free to send replies).
Allow restores that right. Retry is equivalent to forbid followed by allon. It can be considered an
optimization for use in cases where no replies are expected, so retransmitted requests will be
delayed by the kernel.

Both forbid and retry return any link end that was enclosed in the unwanted message. A
process that has received a forbid message keeps a Receive posted on the link in hopes of recei% ing
an allow message.' A process that has sent a forbid message remembers that it has done so and
sends an allow message as soon as it is either willing to receive requests (its request queue is open)
or has no Receive outstanding (so the kernel will delay all messages).

This of oourse makes it vulnerable to receiving unwanted messages itself.

',,
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simple case

connect request > accept

reply compute
-< ------- --------- reply

multiple enclosures

connect request -> accept
goahead

enc

enc

compute
---------- rep --------- reply

enc

enc

figure 2: link enclosure protocol

3.2.2. Moving Multiple Links To mo~e more than one link end with a single LYNX message,
a request or reply must be broken into several Charlotte messages. The first packet contains non-
link data. together with the first enclosure. Additional enclosures are passed in empty enc messages
(see figure 2). For requests, the receiver must return an explicit goahead message after the first
packet so the sender can tell that the request is wanted. No goahead is needed for requests with
zero or one enclosures, and none is needed for replies, since a reply is alwa)s wanted.

One consequence of packetizing LYNX messages is that links enclosed in unsuccessful mes-
sages may be lost. Consider the following chain of events:

a) Process A sends a request to process B. enclosing the end of a link.

b) B receives the request unintentionally: inspection of the code allots one to prose that onk
replies were wanted.

c) The sending coroutine in A feels an exception, aborting the request.

d) B crashes before it can send the enclosure back to A in a forbid message. From the point of
view of language semantics, the message to B was never sent. yet the enclosure has been lost.
Under such circumstances the Charlotte implementation cannot conform to the language
reference manual.

The Charlotte implemen~ation also disagrees with the language definition when a coroutine
that is waiting for a reply message is aborted by a local exception. On the other end of the link the

"
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server should feel an exception when it attempts to send a no-longer-wanted reply. Such excep-
tions are not provided under Charlotte because they would require a final, top-level acknowledg-
ment for reply messages. increasing message traffic by 50%.

33. Measurements

The language run-time package for Charlotte consists of just over 4000 lines of C and 200
lines of VAX assembler. compiling to about 21K of object code and data. Of this total, approxi-
mately 45% is devoted to the communication routines that interact with the Charlotte kernel.
including perhaps 5K for unwanted messages and multiple enclosures. Much of this space could
be saved with a more appropriate kernel interface.

A simple remote operation (no enclosures) requires approximately 57 ms with no data
transfer and about 65 ms with 1000 bytes of parameters in both directions. C programs that make
the same series of kernel calls require 55 and 60 ms. respectively. In addition to being rather slow.
the Charlotte kernel is highly sensitive to the ordering of kernel calls and to the interlea%ing of
calls by independent processes. Performance figures should therefore be regarded as suggestive.
not definitive. The difference in timings between LYNX and C programs is duc to efforts on the
part of the run-time package to gather and scatter parameters, block and unblock coroutines estab-
lish default exception handlers, enforce flow control. perform type checking. update tahles for
enclosed links, and make sure the links are %alid.

4. The SODA Implementation

4.1. Overview of SODA

As part of his Ph. D. research [13.141. Jonathan Kepecs set out to design a minimal kernel
for a multicomputer. His 'Simplified Operating system for Distributed Applications" might better
be described as a communicati.,n, protocol for use on a broadcast medium with a %en lar2e
number of heterogeneous nodes.

Each node on a SO)A network consists of two processors: a client proc'ssor and an associ-
ated kernel processor. Vhe kernel processors are all alike. They are connected to, the network and
communicate with their client processors through shared memorx and intrrupts. Node,. arc
expected to be more numerous than processes. so client processors ire not multi-programmed

E ery SODA process has a unique id. It also adiertises a .ollccuon of' narni, to which it is
willing to respond. There is a kernel call to generate new names, unique ,,,ei ,p.k M.d Ume. I he
disco'er kernel call uses unreliable broadcast in an attempt to find a pr(vcs-, Lh it h,, .id'crtised a
gi.en name.

Processes do not necessarily send messages, rather they request the transfer of data A pro-
cess that is interested in communication specifies a name, a process id. a small amount of out-of-
band information, the number of bytes it would like to send and the number it is willing to
receive. Since either of the last two numbers can be zero, a process can request to send data.
receive data neither, or both. The four varieties of request are termed put. get, signal. and
exchange, respectively.

Processes are informed of interesting e'ents bI means of software interrupts. Fach process
establishes a single handler which it can close temporarily when it needs to mask out interrupts. A
process feels a software interrupt when its id and one of its advertised names are specified in a
request from some other process. The handler is provided with the id of the requester and the
arguments of the request. including the out-of-band informauon The interrupted process is free to
save the information for future reference

At any time, a process can accept a request that was made of it at some time in the past.
When it does so. the request is completed (data is transferred in both directions simultaneousl\).
and the requester feels a software interrupt informing it of thc completion and pro%iding it with a
small amount of out-of-band information from the accepter. I ike the requester. the accepter

%
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specifies buffer sizes. The amount of data transferred in each direction is the smaller of the
specified amounts.

Completion interrupts are queued when a handler is busy or closed. Requests are delayed:
the requesting kernel retries penodicallv in an attempt to get through (the requesting user can
proceed). If a process dies before accepting a request. the requester feels an interrupt that informs
it of the crash.

4.2. A Different Approach to Links
A link in SODA can be represented b, a pair of unique names, one for each end. A process

that owns an end of a link advertises the associated name. Every process knows the names of the
link ends it owns. Every process keeps a hint as to the current location of the far end of each of it,
links. The hints can be wrong. but are expected to work most of the time.

A process that wants to send a ILYNX message. either a request or a repl., initiates a SOl ) N
put to the process it thinks is on the other ,nd of the link. A process moves link ends b. enclosing
their names in a message When the message is SODA-accepted by the receiver. the ends are
understood to ha'e mo.ed. Processes on the fixed ends of moved links will ha%e incorrect hint .

A process that wants to receive a I YNX message, either a request or a replx. initates a
SODA signal to the process it thinks is on the other end of the link. The purpose of the signal is
allow the aspiring receixer to tell if its link is destroyed or if its chosen sender dies. In the latter
case. the receiver will feel an interrupt informing it of the crash. In the former case. we require a
process that destroys a link to accept an% pre% iously-posted status Tignal on its end, mentioning the
destruction in the out-of-band information. We also require it to accept any outstanding put
request, but with a zero-length buffer, and again mentioning the destruction in the out-of-band
information. After clearing the signals and puts. the process can unadfertise the name of the end
and forget that it ever existed.

Suppose now that process A has a link L to process C and that it sends its end to process B.

before after

A B

If C wants to send or receive on L, but B terminates after receiving L from A. then C must be

informed of the termination so it knows that L has been destroyed. C will have had a SODA
request posted with A. A must accept this request so that C knows to watch B instead. We there-
fore adopt the rule that a process that moves a link end must accept any previously-posted SODA
request from the other end, just as it must when it destroys the link. It specifies a zero-length
buffer and uses the out-of-band information to tell the other process where it moved its end. In

I
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the above example, C will re-start its request with B instead of A.

The amount of work in~olhed in moiing a link end is very small, since accepting a request
does not even block the accepter. More than one link can be enclosed in the same message %ith
no more difficulty than a single end. If the fixed end of a mo~ing link is not in actie use. there is
no expense involved at all. In the aboe example. if C receixes a SODA request from B. it will
know that L has moxed.

The only real problems occur Ahen an end of a dormant link is mo%ed. If our example, if 1L
is first used by C after it is moxed. C will make a SO).\ request of A. not B. since its hint is out-
of-date. There must be a wa to fix the hint If each process keeps a cache of links it has kno'n
about recently, and keeps the names of those links adxerised. then % may remember it sent 1. to
B. and can tell C where it %,ent. If k has forgotten. C can use the discover command in an attempt
to find a process that knows about the far end of I..

A process that is unable to find the far end of a link must assume it has been destroyed. If
L exists, the heuristics of caching and broadcast should suffice to find it in the vast majorit of
cases. If the failure rate is comparable to that of other "acceptable" errors. such as garbled mes-
sages with "valid" checksums. then the heuristics ma indeed be all we ever need.

Without an actual implementation to measure, and without reasonable assumptions about
the reliabilit of SODA broadcasts, it is impossible to predict the success rate of the heuristics. Ihe
SODA discover primitixe might be especially 3trained by node crashes, since they would tend to
precipitate a large number of broadcast searches for lost links. If the heuristics failed too often., a
fall-back mechanism would be needed.

Sexeral absolute algorithms can be devised for finding missing links. Perhaps the simple,:
looks like this:
" Every process adxertises a freeze name. When C discoxers irs hint for I, is bad. it pots a

SODA request on the freeie name of exery process currentl in existenc (SO).\ make, it
easy to guess their ids). It includes the name of 1. in the request.

* Each process accepts a freeie request immediately, ceases execution of exerying but its own
searches (if an ). increments a counter. and posts an unfreeze request with C. If it has a hint
for i. it includes that hint in the freeze accept or the unfreeie request.

* When C obtains a new hint or has unuccessfull.% queried exeryone. it accepts the unfree/e
requests. When a froien process feels an interrupt indicating that its unfreiee requeLt hi,
been accepted or that C has crashed, it decrements its counter. If the counter hits lert,. It con-
unues execution. The existence of the counter pennits multiple concurrent searches.

This algorithm has the considerable disadxantage of bnnging exer. I Y\NX process in exitene to a
temporary halt. On the other hand. it is simple, and should only be needed when a node crashe-
or a destroyed link goes unused for so long that exeryone has forgotten about it

4.2.1. Potential Problems As mentioned in the introduction, the SO)-\ ersion of I YNX was
designed on paper only. An actual implementation would need to address a number of potential
problems. To begin with, SODA places a small, but unspecified. limit on the sie of the out-of-
band information for request and accept. If all the self-descriptixe information included in mes-
sages under Charlotte were to be provided out-of-band, a minimum of about 48 bits would be

needed. With fewer bits available, some information would have to be included in the messages
themselves, as in Charlotte.

A second potential problem with SODA involves another unspecified constant: the permissi-
ble number of outstanding requests between a gixen pair of processes. The implementation
described in the prexious section would work easily if the limit here large enough to accommodate
three requests for eery link between the processes (a lYNX-request put. a LYNX-repl% put. and I
status signal). Since reply messages are alwa.s wanted (or can at least be discarded if unwanted).
the implementation could make do w Lh two outstanding requests per link and a single extia o

12.
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r',lies. Too small a limit on outstanding requests would leave the possibility of deadlock when
many links connect the same pair of processes. In practice, a limit of a half a dozen or so is
unlikely to be exceeded oit implies an improbable concentration of simultaneously-active resources
in a single process). but there is no %ay to reflect the limit to the user in a semantically-meaningful
way. Correctness *ould start to depend on global characteristics of the process-interconnection
graph.

4.3. Predicted Measurements

Space requirements for run-time support under SODA would reflect the lack of special cases
for handling unwanted messages and multiple enclosures. Given the amount of code devoted to
such problems in the Charlotte implementation, it seems reasonable to expect a savings on the
order of 4K bytes.

For simple messages, run-time routines under SODA would need to perform most of the
same functions as their counterparts for Charlotte. Preliminary results with the Butterfly imple-
mentation (described in the following section) suggest that the lack of special cases might sa' e
some time in conditional branches and subroutine calls, but relatively major differences in run-time
package overhead appear to be unlikely.

Overall performance, including kernel overhead. i,; harder to predict. Charlotte ha" I con-
siderable hardware adxantage: the only implementation of SODA ran on a collection of PI)P
11/23's with a l-Mbit/second CSMA bus. SODA. on the other hand, was designed with speed in
mind. Experimental fi2ures rexeal that for ,mall messages SODA was three times as fast as Char-
lotte.2 Charlotte programmers made a deliberate decision to sacrifice efficiency in order to keep the
project manageable. A SO) \ version of I YNX might w4ell be intrinsically faster than a compar-
able version for Charlotte.

5. The Chrysalis Implementation

5.1. Overvie% of Chr)salis
The BB\ Butterfly Parallel Processor [51 is a 68000-based shared-memory multiprocessor.

The Chrysalis operating system prov ides primitives, many of them in microcode, for the manage-
ment of system abstractions Among these abstractions are processes, memor) objects. event
blocks, and dual queues.

Each process runs in an address space that can span as many as one or two hundred
memory objects. Each memory object can be mapped into the address spaces of an arbitrar.
number of processes. Synchronization of access to shared memory is achieved through use of the
event blocks and dual queues.

An event block is similar to a binary semaphore. except that 1) a 32-bit datum can be pro-
vided to the V operation, to be returned by a subsequent P, and 2) only the owner of an e'ent
block can wait for the event to be posted. Any process that knows the name of the event can per-
form the post operation. The most common use of event blocks is in conjunction with dual
queues.

A dual queue is so named because of its ability to hold either data or event block names. A
queue containing data is a simple bounded buffer, and enqueue and dequeue operations proceed as
one would expect. Once a queue becomes empty. however, subsequent dequeue operations actu-
ally enqueue event block names. on which the calling processes can wait. An enqueue operation on
a queue containing event block names actually posts a queued event instead of adding its datum to
the queue.

" The difference is less dramatic for larger messages: SODA's slow network exacted a heav.y toll. The
figures break even somewhere between 1K and 2K bytes.

V. V
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5.2. A Third Approach to Links
In the Butterfly implementation of LYNX, every process allocates a single dual queue and

event block through which to receive notifications of messages sent and receixed. A link is
represented by a memory object. mapped into the address spaces of the two connected processes.
The memory object contains buffer space for a single request and a single reply in each direction.
It also contains a set of flag bits and the names of the dual queues for the processes at each end of
the link. When a process gathers a message into a buffer or scatters a message out of a buffer into
local variables, it sets a flag in the link object (atomically) and then enqueues a notice of its activity
on the dual queue for the process at the other end of the link. When the process reaches a block
point it attempts to dequeue a notice from its ow n dual queue, waiting if the queue is empty.

As in the SODA implementation, link mo, ement relies on a system of hints. Both the dual
queue names in link objects and the notices on the dual queues themselves are considered to be
hints. Absolute information about which link end, belong to which processes is known only to the
owners of the ends. Absolute information ahout the aailability of messages in buffers is contained
only in the link object flags. Whenever a process deqieues a notice from its dual queue it checks
to see that it owns the mentioned link end ind (hat the appropriate flag is set in the corresponding
object. If either check fails, the notice is disc aded. Fer. change to a flag is e~entuall. reflected
by a notice on the appropriate dual queue hut not e'cr dual queue notice reflects a change to a
flag. A link is mo%ed by passing the (addres,-spacc-independent) name of its memor. object in a
message. When the message is received. the sending process removes the memor. object from its
address space. The recei'ing process maps the object itbo its address space. changes the informa-
tion in the object to name its own dual queue and 'un, inspects the flags. It enqueues notices on
its own dual queue for an of the flags that are c

Primitives provided by Chrxsalis make atomic changes to flags extremely inexpensive.
Atomic changes to quantities larger than 16 bits (including dual queue names) are relatively costl..
The recipient of a mo~ed link theretore %rites the name of its dual queue into the new memor.
object in a non-atomic fashion. It is possible that the process at the non-moming end of the link
will read an invalid name. but onl. alter setting flags. Since the recipient complete, its update of
the dual-queue name belbrc inspecting the flags. changes are ne%er overlooked.

Chrysalis keeps a reference count for each memor object. To destro. a link. the process at
either end sets a flag bit in the link object, enqueues a notice on the dual queue for the process at
the other end. unmaps the link object from its address space, and informs Chrysalis that the objectt
can be deal,cated when its reference count reaches zero. When the process at the far end
dequeues the destruction notice from its dual queue. it confirms the notice b checking it against
the approprd[e flag and then unmaps the link object. At this point Chrysalis notices that the refer-
ence count has reached zero. and the object is reclaimed."e

Before terminating, each process destroys all of its links. Chrysalis allows a process to catch
all exceptional conditions that might cause premature termination, including memory protection
faults, so even erroneous processes can clean up their links before going aa.. Processor failures
are currently not detected.

5.3. Preliminary Measurements

The Chrysalis implementation of I YNX has only recendy become a~ailable. It consists of
approximately 3600 lines of C and 200 lines of assembler, compiling to 15 or 16K bytes of object
code and data on the 68000. Both measures are appreciabl. smaller than the respectie figures for
the Charlotte implementation.

Message transmission times are also faster on the Butterfly. by more than an order of magni-
tude. Recent tests indicate that a simple rem, e operation requires about 2.4 ms with no data
transfer and about 4.6 ms wth 1000 b.tes ot parameters in both directions. Code tuning and pro-
tocol optimizauons noA under development arc ikel. to impro~e both figures b% 30 to 40%.

"p
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6. Discussion
Even though the Charlotte kernel provides a higher-level interface than does either SOl)..\

or Chrysalis, and even though the communication mechanisms of LYNX were patterned in large
part on the primitives prouided b. Charlotte, the implementations of IYNX for the latter two s~s-
tems are smaller, simpler. and faster. Some of the difference can be attributed to duplication of
effort between the kernel and the language run-time package. Such duplication is the usual target
of so-called end-to-end arguments [191. Among other things, end-to-end arguments observe that
each level of a layered software system can only eliminate errors that can be described in the con-
text of the interface to the level above. Overall reliability must be ensured at the application level.
Since end-to-end checks generally catch all errors, low-level checks are redundant. They are
justified only if errors occur frequently enough to make early detection essential.

LYNX routines never pass Charlotte an invalid link end. They never specify an impossible
buffer address or length. They never try to send on a moving end or enclose an end on itself. To
a certain extent they provide their own top-level acknowledgments, in the form of goahead. retrx.
and forbid messages. and in the confirmation of operation names and types implied by a reply
message. The would proxide additional acknowledgments for the replies themsel'es if they were
not so expeniMe. For the users of I.)i NX. Charlotte wastes time by checking these things itself.

Duplicatimn alone. howe-,er, cannot account for the wide disparit. in complexit% and
efficiency between the three ILYNX implco,.ntations. Most of the differences appear to be due to
the difficulty of adapung higher-lexel Charlotte primitives to the needs of an application for which
they are almost, but not quite, correct. In comparison to Charlotte. the language run-time packages
for SOl)A and Chr.salis can
(1) moxe more than one link in a message

(2) be sure that all receixed messages are wanted
(3) reco'er the enclosures in aborted messages

(4) detect all the exceptional conditions described in the language definition, without an extra
acknowkledgments.

These adxantages ohtain precisely because the facilities for managing virtual circuits and for screen-
ing incoming me--ages are not provided b. the kernel. By moving these functions into the
language run-time package. SO).\ and Chrysalis allow the implementation to be tuned specificall.
to LYNX. In addition, h', maintaining the flexibility of the kernel interface they permit equal]'.
efficient |mpler-ent.itr,, of a wide ariet% of other distributed languages. with entirel. different
needs.

It should he emphasii/ed that Charlotte was not originally intended to support a distributed
programming language. I ike the designers of most similar systems. the Charlotte group expected
applications to be written directly on top of the kernel. Without the benefit, of a high-lcel
language, most programmers probably would prefer the comparativel. powerful facilities of Char-
lotte to the comparatitel% primitive facilities of SODA or Chrysalis. With a language ho%e~er, the
level of abstraction of underlying software is no longer of concern to the average programmer.

For the consideration of designers of future languages and systems. we can cast our experi-
ence with LYNX in the form of the following three lessons:

Lesson one: Hints can be better than absolutes.
The maintenance of consistent, up-to-date. distributed information is often more trouble than
it is worth. It can be considerablh eaier to rely on a system of hints, so long as they usuall.
work, and so long as we can tell when the% fail.

The Charlotte kernel admits that a link end has been mo%ed only when all three parties agree.
The protocol for obtaining such agreement Aas a major source of problems in the kernel. par-
ticularly in the presence of failures and simultaneousl.-mo~ing ends [3]. The implementation
of links on top of SOI)-\ and Chrysalis was comparati\ely easy. It is likely that the Charlotte

J" .0 r or ed W
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kernel itself would be simplified considerahly by using hints when moving links.

Lesson two: Screening belongs in the applicauton layer.
Every reliable protocol needs top-level acknowledgments. A distributed operating system can
attempt to circumvent this rule by allo ng a user program to describe in advance the sorts of
messages it would be willing to acknt, ledge if they arrived. The kernel can then issue ack-
nowledgments on the user's behalf. Ihe shortcut only works if failures do not occur betAeen
the user and the kernel, and if the descriptie facilities in the kernel interface are sufficienth
rich to specify preoiely %h10 mes,,ages are wanted. In LYNX. the termination ofta corounne
that was waiting for a rep]% can be considered to be a "failure" between the user and the ker-
nel. More important. the descripti'e mechanisms of Charlotte are unable to distinguish
between requests and replies on the same link.

SODA pro% ides a very general mechanism for screening messages. Instead of asking the user
to describe its screening function. SODA allows it to provide thai function itself In effect. it
replaces a static descnption of desired messages with a formal subroutine that can be called
when a message arries. Chrysalis provides no messages at all. but its shared-memory opera-
tions can be used t, build whatexer style of screening is desired.

Lesson three: Simple primitives are best.
From the point of %iew of the language implementor, the 'ideal operating system" probably
lies at one of tmo extremes: it either provides everything the language needs. or else provides
almost nothing. but in a flexible and efficient form. A kernel that provides some of what the
language needs. but not all. is likely to be both awkward and slow: awkward because it has
sacrificed the flexibility of the more primitive system. slow because it has sacrificed its simpli-
city. Clearly. Charlotte could be modified to support all that ILYX requires. The changes.
however, would not be trivial. Moreover, they would probably make Charlotte significantl\
larger and slo'ker. and would undoubtedly leave out something that some other language
would want.

A high-le el interface is onlh useful to those applications for which its abstractions are
appropriate An application that requires only a subset of the features prm ided b. an under-
lying laier Of oftvkare must generall. pa. for the Ahole set anpay. An application that
requires feature, hiddetn b. an underl'.ing layer may be difficult or impossible to build. For
general-purpose computing a distributed operating system must support a wide 'ariety of
languages and apphcitions. In such an enironment the kernel interface will need to be rela-
tixely primitme
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